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ABSTRACT

A study was made of the extent of hydrogen absorption during electro-

deposition of Sn or Cd onto an Fe Substrate, and, subsequently during electro-

lytic hydrogen charging of the Sn or Cd-coated Fe membranes. The effective-

ness of deposits, in general, for decreasing hydrogen absorption by the

substrate is discussed in terms of their barrier character and of their catalytic

nature for promoting the hydrogen evolution reaction. The latter is a new

method for decreasing hydrogen absorption. The reduction in hydrogen absorption

was found to be in proportion to the coating thickness at >lpm. Analysis of

the data indicates that diffusion of hydrogen through the coating is the rate

determining step of the permeation process, and that the product of the

diffusivity and solubility of hydrogen is in the following order: Sn < Cd < Fe.

The effective diffusivity of hydrogen at 25°C in both the Sn and Cd electro-

-10 2-1
deposites <10 cm s . These diffusivities could be obtained in relatively

short time experiments since the coatings were quite thin. As such the bilayer

membrane offers advantages over the usual single layer membrane for obtaining

the diffusivity of hydrogen in metals for which the permeability is very low.
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INTRODUCTION

The problem of hydrogen embrittlement of iron base alloys is now well

recognized and serious efforts are underway to understand the relevant

factors and to prevent or control its incidence. Metallic coatings have

frequently been used to minimize the extent of hydrogen uptake by an alloy

(a brief review is given in reference [1]). More recently, an alternative

method of decreasing hydrogen absorption has been proposed and evaluated (1-3).

More severe charging conditions are usually encountered when the source of

hydrogen is an aqueous rather than gaseous phase, since a very large fugacity

of hydrogen is easily reached by a fairly low hydrogen charging current [4,5].

Such a current is much less than the corrosion current of iron in an acid

media and is comparable to that in neutral and alkaline media

During electroplating, hydrogen may be dischared and enter the steel.

Very low concentrations of hydrogen, Z lppm, are sufficient to cause degradation

of steel, which may be manifested in any of a number of ways such as reduced

ductility [6], reduced toughness [7], brittle fracture [8], or stress-corrosion

cracking [9]. Different types of heat treatment are usually employed to reduce

the hydrogen content in electroplated parts, although heat treatment does not

always give good results [10,11]. It is of great interest to use plating

baths which introduce little hydrogen into the steel and consequently do not

cause embrittlement, and also give a deposit which itself has a low tendency

to absorb hydrogen and is a good barrier to hydrogen permeation. Investigations

have so far concentrated on cadmium plating baths [12,13), with less attention

focused on tin plating baths [14].

Both Sn and Cd appear to have a low permeability [15,16) for hydrogen.

Both also are considerably less catalytic than most other metals, including

iron, for the hydrogen evolution reaction. Thus, they do not promote corrosion
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of the base metal (as do, for example, noble metal coatings) when the base

metal is exposed locally.

THEORETICAL

Of the two approaches to decreasing hydrogen absorption, one is based

on catalyzing the hydrogen evolution reaction (h.e.r.) by distributing, even

sparingly, over the surface a metal with a high exchange current density

for the h.e.r. [1-3]. The other is the barrier effect which becomes a factor

as the thickness of 1 dense, continuous coating, which has a low hydrogen

solubility and/or diffusivity, increases.

Catalytic Mechanism. The effectiveness of different substrates for

promoting the h.e.r. may be described in terms of its exchange current

density, io, on these different substrates. When the transfer coefficient is

the same on aifferent substrates, the rate, i, of the h.e.r., is simply in

the -atio of its exchange current density on these substrates. A deposit

with A higher i than the substrate, therefore, provides for a lower average
0

overpotential n on the composite surface for a given charging current I,

Fig. l.t This fact may be used to advantage for decreasing hydrogen absorption

by the substrate. This occurs for certain mechanisms of hydrcgen absorption

in which the coverage, and hence the absorption, of hydrogen is a function of

the overpotential. In the limiting case of a small amount of deposit, absorption

directly via the deposit is very small and can be neglected. For large amounts

of deposit the situation will vary depending on the mechanism of hydrogen

evolution, and the permeability of hydrogen in the deposit.

In the case of iron the relation between hydrogen coverage, e, and the

overpotential at low coverages is 15],

'The change in area of substrate I is appropriately neglected when the area
of substrate 2 is much smaller than that of substrate 1 and/or (i )2 >>(i )
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where k2 is the rate coefficient of the hydrogen recombination reaction, a

is the symmetry factor of the activation barrier for discharge, and F, R and

T have their usual meanings. In the limiting case of a sparse deposit of

higher i than the substrate, Eq. (1) may be applied to the composite sub-0

strate-deposit surface (Fig. 1).

Thus, a decrease in overpotential due to a deposit of higher i results0

in a decrease in the hydrogen coverage on the iron surface. It follows that

the solubility of hydrogen in the Fe in equilibrium with the coverage also

decreases, and then so also does the permeation of hydrogen. Since this

catalytic approach for lowering hydrogen uptake from electrolytic solutions

is a function of the mechanism of the h.e.r., its effectiveness will vary

from metal to metal and even for the same metal under different electrolytic

conditions. Thus, the explicit form of the dependency of 0 on n will depend

on the details of the h.e.r. just as equation (1) applies for the coupled

discharge-recombination mechanism of hydrogen evolution. This model is

supported by experimental results for pt electrodeposits on iron [1] and for

pt-implanted Fe 13]. Both of these iron - platinum composite surfaces cause

a significant decrease in the overpotential at constant current and also in

the coverage, solubility and permeation of hydrogen.

Barrier Mechanism. A low permeability of hydrogen in the coating requires

that a dense coating forms with a low solubility, S, and/or diffusivity, D, for

hydrogen. Some indication as to how good a material may be as a barrier

can be obtained by comparing either or both of these quantities.

Solubility data, however, are sparse at ambient and moderately elevated

temperatures; diffusivity data are only somewhat more available. Hydrogen

solubility is dependent on the electrolytic charging conditions whereas
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diffusivity is not. For coatings to be effective barriers, they need to also

be continuous, relatively thick and impervious, and stable in the environment

much like protective scales on metals. Then, there will be an appreciable

time lapse, even for thin layers, before the activity (concentration) of

hydrogen at the coating/substrate interface rises appreciably, or in the limit

approaches that which exists in the environment.

The barrier effect, however, does not function independently of the

catalytic effect, since the hydrogen charging (evolution) reaction occurs on

the coating surface. Thus, the selection of a coating from several metals

with equivalent barrier characteristics may come down to a choice based on

their catalytic nature for the hydrogen evolution reaction, as discussed above.

Thus, choosing a coating with a high exchange current density could further

decrease hydrogen uptake. A higher hydrogen evolution rata, however, may

promote a higher corrosion rate. Alternatively, a metal such as Sn or Cd,

may be chosen based on their low exchange current density so as not to promote

corrosion reactions. Thus, in the case of Sn or Cd layers both hydrogen

absorption and corrosion are reduced by the barrier and by the inhibiting

nature of the coating surface for the h.e.r., respectively.

EXPERIMENTAL

A Devanathan and Stachurski cell [17] was used to measure the perme-

ability of hydrogen through coated Ferrovac E iron membranes. It consists

of two identical electrolytic cells separated by the metal membrane. Cell

I and associated circuitry is used to generate the hydrogen charging current

and to measure the potential of the charging side, while cell 2, is used to

monitor the flux of hydrogen diffusing through the membrane by measuring the

hydrogen oxidation current at its pallidized exit surface. The electrode

potential at the exit surface is sufficiently positive to oxidize all of the
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hydrogen arriving at the surface [i]. The reference electrodes were Hg/HgO

and the measured potentials were converted to, and reported on, the standard

hydrogen electrode (SHE) scale. The charging solution in cell 1 was 0.1N NaOH

+ 2ppm As while cell 2 was filled with 0.1N NaOH. The Ferrovac E iron membranes

(0.037 cm thick) were polished down to 600 emery paper and annealed in an

evacuated capsule which had been purged with an Ar-l% H2 gas mixture at 1000'C

for 2 hrs. Details of the membrane preparation, cell design, circuitry, the

potential at the exit side of the membrane, edge effects, proper membrane

thickness.. .etc. are presented elsewhere [1].

The experimental technique was essentially that commonly used in studying

the kinetics of the hydrogen evolution reaction. Strict conditions of purity

and deareation were maintained throughout the measurements. The solutions

were pre-electrolyzed overnight under an atmosphere of prepurified nitrogen

using a Pt anode which was separated from the solution by a glass frit and

and Fe cathode, and then transferred from the pre-electrolysis cell to the

permeation cell under nitrogen. The measurements were taken galvanostatically

in both the ascending and descending directions. The charging current was

changed in steps. The potential was recorded after a stationary value was

obtained, usually after 2-3 minutes. All measurements were taken at 25+3 0 C.

Cadmium was electrodeposited at room temperature from a cyanide bath [181
-i-I - -2

(25gm 1 CdO, 75 gm 1 NaCN and 15 gm 1- NaOH) by a strike of 100 mA cm at

room temperature from a sodium stannate bath containing 100 gm 1- 1 Na2SnO 3,

10 gm 1-I NaOH, 15 gm 1- 1 CH 3COONa and 10 ml 1- of 3% H202 [19]. The current

efficiencies of these baths were determined by coulometric, weight gain, and

thickness analyses, and their continuity was determined by SEM cross-section

and topographic examinations. X-ray diffracation examination confirmed that

the lattice parameters and crystallographic structures were those of Cd and

s-Sn.



8

In order to obtain reproductibility of the permeation data several

different precharging procedures were evaluated. The procedure adopted

consists of precharging the uncoated iron membrane in 0.lN NaOH for about

-2
45 minutes at 10 mA cm prior to a permeation measurement in 0.1N NaOH

solution containing 2 ppm As. A coating of specified thickness was then

applied in situ after draining and r, filling the cell with the plating

solution. Following this step the cell was drained, thoroughly washed with

doubly distilled water and filled again with fresh 0.1N NaOH containing 2 ppm

As for permeation runs on the coated iron membrane. Permeation data on

thicker coatings were obtained by repeating these steps. All solutions were

changed under a N2 atmosphere. Arsenic was added to the charging solution

because in its absence no hydrogen was found to diffuse through the coated iron-

Arsenic has the effect of increasing the kinetics of hydrogen entry into iron [20].

Cross-section examination of the membranes following the permeation experiment

included preparation of the cross section by fracturing the membrane in liquid

nitrogen.

RESULTS

Figs. 2 and 3 show the cross section and surface morphologies of the

Sn and Cd electrodeposits. Porosity is a factor for both metals; in the case

of Cd a more dense layer forms under the outer deposit. In cooling to liquid

nitrogen temperature the room temperature stable $-Sn phase may have trans-

formed to the stable low temperature a-Sn and then transformed back again to a-Sn

on returning to room temperature. The liquid nitrogen step, however, had no

effect on the morphology of the Sn, Fig. 2.

Fig. 4 shows the dependency of hydrogen absorption on Cd and Sn plating

-2
time for a deposition current density of 1 mA cm . The total time of plating

for cadmium corresponds to a 3-im thick coat and for Sn to a 1.5-1;m thick coat.
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The measured electrode potential during Cd deposition drifted slightly (0.03VO

in the less noble direction to a final value of -1.1V (S.H.E.), and during Sn

deposition drifted about 0.3V to a final value of -1.6V. The transients show

that the maximum permeation currents are 15.6 .A cm (lxlO atoms H cm s - )

for cadmium and 21.2 pA cm- 2 (1.3 x 1014 atoms H cm-2s-1 ) which correspond to

6 nm (60 A) and 130 nm thick coats for plating times of 27 sec and 3.35 min.,

respectively.

Fig. 5 shows a typical permeation transient for hydrogen permeation

through uncoated iron. It also shows the effect of Cd and Sn coats (of different

thickness) on the permeation transient of hydrogen through the coated iron

membrane. At comparable thickness, Sn gives the lower permeability. It is

also clear that the hydrogen permeation flux decreases as the coating thickness

increases for both Cd and Sn. The measured electrode potential during hydrogen

charging at a fixed impressed cathodic current was always considerably less noble

on the coated membranes than on the uncoated Fe membrane (Fig. 6). Tafel

behavior is observed for the coated and uncoated membranes, Fig. 6.

Fig. 7 shows the (quasi) steady-state permeation current as a function

of the reciprocal of the coating thickness for Cd and Sn. The results for Cd

at both charging currents and for Sn at the two higher charging currents

satisfactorily fit straight line relations passing through the origin (infinite

coating thickness). This indicates, as discussed below, that the permeation

process was controlled by diffusion through the coatings.

Table 1 lists the values of DC' and C0 for both Cd and Sn coatings for

different charging currents. The quantity C0 is the hydrogen solubility just

inside the metal surface at the overpotential considered [21]. Table 1 includes

a column for the electrode potential at the charging surface of the membrane,

since the latter is the driving force for the hydrogen evolution reaction and,
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hence, also for the hydrogen absorption process. The solubility C' is an

important quantity with regard to avoiding mechanical degradation of steel.

The C' values are lower for Sn-coated than for Cd-coated iron, Table 1.

Table 2 lists the diffusivity values obtained for Cd and Sn coated iron

membranes from the rise and decay time of the permeation transients [211. In

obtaining D, the experimentally determined thickness of the respective coating

was used without correction for porosity; the true D is smaller in proportion

to the ratio of the effective-to-measured thickness, estimated at 2 to 5 times.

DISCUSSION

The Tafel line on the uncoated Fe membrane (Fig 6) is in agreement

with those obtained previously [22]. The potential shifts shown in Fig. 6

indicated that the h.e.r. is more facile on Fe than on Cd than on Sn. This

result is compatible with the finding [23,24] that the efficiency of these

metals in catalyzing the rate of combination of absorbed hydrogen is in the

order Fe>Cd>Sn.

During the electrodeposition step, the permeation current, prior to

growth of the deposit to a thickness giving significant barrier character,

is quite high, e.q., the maximum values in Fig. 4, especially compared to

permeation rates for As-free sodium hydroxide charging solutions, i.e.,

-2
'3uA cm [25]. These results support the findings that compoumds of CN-

in electroplating baths increase the absorption [21,26] and, consequently,

the embrittling influence of hydrogen. The large hydrogen permeation during

Sn plating also is consistent with the observation that high-strength steel

is highly embrittled when plated with tin from the alkaline stannate bath

[27]. The large hydrogen absorption, in this case, is attributed to the

stannate ion.

The permeation transients obtained during electrodeposition (Fig. 4) Show

d4
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that during an initial period hydrogen permeation increases in the normal way.

During this period, the rates of hydrogen evolution and absorption are dependent,

seemingly to a high degree, on the availability of the iron surface. This is

to be expected since both the catalytic nature of Sn and Cd for the hydrogen

evolution reaction and the permeability of H in Sn and Cd are lower than in

the case of iron. In the second stage, for both metals there is a marked

reduction in hydrogen absorption (permeation) with time of plating, consistent

with the formation of a continuous and sufficiently thick electrodeposit which

then functions as a good barrier to hydrogen. Though these effects are similar

for both Cd and Sn, the time frame is quite long during Sn plating so that the

maximum permeation rate is reached only after the deposit thickness on average

reaches ~0.131im This is consistent with the quite porous nature of the Sn

coat evident in Fig. 2, so that a relatively large amount of deposition occurs

prior to the establishment of a continuous layer which functions as a barrier

to hydrogen permeation. The shorter time during Cd plating indicates that a

dense layer forms more quickly, during or preceding formation of an outer porous

layer consisting of weakly bound, large scale crystallities, Fig. 3.

It is well known that hydrogen embrittlement is, among other factors,

a function of the total amount of hydrogen tLavelling in and across the plate

[21,28]. The area under the permeation-time transient between time on, and

time off, of the charging current is a measure of the total amount of hydrogen

introduced into the system. The permeation data obtained during electrodeposition

indicates that the Cd plating bath introduces less hydrogen into the Fe membrane

than does the Sn plating bath for comparable plating thickness. This occurs

in spite of the higher permeability of cadmium (Fig. 5) and is, therefore, con-

cluded to be simply due to the faster build up of a continuous Cd deposit (Fig.4)

and a lower hydrogen evolution rate (higher efficiency of the Cd bath). The
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Table 2. Values of hydrogen diffusivity through Sn and Cd
coatings based on coating thickness without correction
for porosity.

2 -1Diffusion Coefficient, cm s @ 25°C
Metal Rise Time Decay Time Average

-Sn 3.2 x 10- 10 4.6 x 10 - I 0 4.0 X 10 -10

Cd 4.6 x 10 - I 0 4.6 x 10- 10 4.6 x i10- 0

- .-* 4
oV



14

latter is consistent with cadmium's more noble electrode potential during

deposition.

g The slope of each of the plots in Fig. 7 is Bi /9(I/L) = FD [C°-CMFE]

where C* and C are the concentrations of hydrogen in the lattice at the
M-Fe

outer surface of the coating and at the phase boundary between the coating and

the iron substrate, repectively; F is the Faraday constant; and L is the thick-

ness of the coating. When diffusion through the coating is rate determining

it follows that the permeation process is relatively fast through the iron

membrane, and hence, CMFe approaches the value at the exit side of the (iron)

membrane, i.e., CMFe -O. Thus, the slope becomes equal to FDC ° , for which the

plot of i vs. 1/L yields a straight line passing through the origin.

j A large slope indicates a large value of the product DC', i.e., a large diffusivity

and/or concentration and obviously a less effective coating. Such data indicate

that the hydrogen solubility just inside the coating surface for tin-plated

iron is less than that for cadmium-plated iron. Thus, in contrast to the

situation during the electrodeposition step, there will De less embrittling

influence of hydrogen during hydrogen charging of Sn-coated, than of Cd-coated

iron.

CONCLUSIONS

1. Sn and Cd electrodeposites on iron are shown to be effective barriers to

hydrogen at thicknesses -lum. By controlling electroplating conditions
to reduce porosity, even thinner coatings have the potential to be effective
barriers.

2. The diffusivity of hydrogen was determined to be on the order of 10 cm s
at 25°C in both Sn and Cd.

3. A modification of the permeation method (use of a bilayer, rather than
single layer membrane) extends the range of diffusivity which can be

readily measured to much lower values.
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4. It is shown that, in principle, the nature of the coating surface with
regard to promoting the h.e.r. can strongly affect hydrogen absorption.
As such a new method of controlling hydrogen absorption is presented.
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FIGURE CAPTIONS

Figure 1 Relative polarization behavior for hydrogen evolution on a deposit
(2) and on a substrate (1) for the condition (i)2>>(i ). Note that

n32 (sketch at left) is much than n, for the deposit-?ree
s u strate during hydrogen charging at a give rate, I.

Figure 2 SEM micrographs of a cross section (top) and the surface of a Sn
electrodeposit on Fe. Cross section was obtained by fracturing in
liquid N ,Sn , Sn and Fe.. are Sn surface, Sn cross section and Fe
cross section, respectivefy.

Figure 3 SEM micrographs as in Fig. 2, but of a Cd electrodeposit.

Figure 4 Hydrogen permeation through Fe membranes during electrodeposition
of Sn or Cd onto the F surface. Deposition current for both
Sn and Cd was 1 mA cm

Figure 5 Effect of Sn and Cd-coating thickness on hydrogen permeation through
a Ferrovac-5 iron membrane (0.37 mm thick). Charging currSt was
0.25 mA cm . Charging solution was O.LN NaOH + 2 ppm As

Figure 6 Tafel plots for hydrogen evolution on Fe, and on Sn and Cd-coated
Fe membranes.

Figure 7 Dependence of the steady-state hydrogen permeation current on the
reciprocal of the thickness of the Cd and Sn coats.
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